L’espace-temps
autour d’un trou noir
Reprenons l’image
d’un tissu élastique comme représentation de l’espace en relativité. Le trou noir correspond à une bille si lourde qu’elle
s’enfonce profondément dans le tissu jusqu’à disparaître. La bille est
désormais invisible et uniquement détectable par la présence d’un trou dans le
tissu élastique. De la même façon, il est impossible de voir un trou noir, mais
on peut le deviner par la présence d’une importante distorsion de l’espace et
du temps dans son voisinage.
La distorsion du
temps
Les propriétés
les plus étonnantes sont celles qui concernent la distorsion du temps autour
d’un trou noir. Comme nous l’avons vu, le temps s’écoule plus lentement dans un
champ gravitationnel fort. C’est dans le cas extrême d’un trou noir que ce
genre d’effet est particulièrement spectaculaire.
Imaginez-vous en
train d’observer au loin un ami suffisamment intrépide pour vouloir plonger
dans un trou noir. Au fur et à mesure qu’il va s’approcher de celui-ci, vous
verrez sa montre tourner de plus en plus lentement. Le déplacement de
l’aiguille correspondant à une seconde prendra de plus en plus de temps, une
minute, une heure, un jour, un mois… Au moment où il atteindra le rayon de
Schwarzschild, ce mouvement prendra un temps infini. L’image de votre ami restera
figée pour l’éternité.
Pour votre ami
par contre la situation sera inversée. Quand il lira l’heure sur sa montre, il
ne remarquera rien de spécial. Mais en regardant la vôtre il sera surpris. Il
verra tourner l’aiguille de plus en plus rapidement, un tour sera accompli en
une seconde, une milliseconde, une microseconde… Il observera bientôt la vie
des étoiles se dérouler en une fraction de seconde, puis, en atteignant
finalement le rayon de Schwarzschild, il pourra observer toute l’histoire
future de l’Univers.
Il n’est pas
utile de préciser qu’il n’y a pas de billet retour pour un tel voyage. La
frontière définie par le rayon de Schwarzschild ne laisse passer que dans un
sens.
L’effet Einstein
La description
ci-dessus n’est pas tout à fait correcte, un trou noir vu de l’extérieur n’est
pas une collection d’images d’astronautes terrifiés. En fait, un autre effet
vient se superposer à la décélération du temps. Comme nous l’avons vu, la
lumière est affectée par la présence de la gravité à travers l’effet Einstein. Plus le
champ gravitationnel d’un astre est fort, plus les photons qui s’en échappent
sont affaiblis et décalés vers de plus grandes longueurs d’onde.
Ainsi, lorsque
votre ami se rapproche du rayon de Schwarzschild, les photons constituant son
image deviennent moins énergétiques. Ils sont d’abord décalés vers le rouge,
puis sortent du domaine visible. Son image, au lieu de rester suspendue, va peu
à peu disparaître et laisser place à un noir plus caractéristique de l’objet
central.
Les forces de
marée
Notons un dernier
effet qui va se révéler dramatique : l’entrée en jeu des forces de marée.
Si l’intensité du champ gravitationnel autour d’un trou noir est énorme, ses
variations avec la distance au centre le sont également.
Imaginons que
votre ami tombe les pieds en premier vers le trou noir. Le champ de gravité,
qui augmente lorsque la distance au centre baisse, sera plus fort au
niveau des pieds qu’au niveau de la tête. Cela signifie que les pieds de votre
ami seront plus accélérés que sa tête. Par conséquent, son corps va être étiré
dans le sens de la longueur, d’abord légèrement puis de plus en plus fort, avec
les conséquences fatales que l’on peut craindre (d’où le charmant nom d’effet
spaghetti).
Vue d’artiste de la
mort d’une étoile qui se rapprocherait trop d’un trou noir. Les forces de marée
produites par le trou noir sont capables de déformer l’étoile jusqu’à ce
qu’elle se désagrège et libère le gaz qui la composait. Ce phénomène n’est pas
purement théorique, il a été observé indirectement dans les rayons X par les
satellites XMM et Chandra en 2004 au centre de la galaxie RXJ1242-11. Crédit : ESA/S. Komossa
Les trous noirs
en rotation
D’autres
phénomènes fascinants se produisent lorsque le trou noir est en rotation, ce
qui est probablement le cas la plupart du temps. La solution des équations de
la relativité générale dans ce cas n’a été
trouvée que dans les années 1960, une preuve de plus de la complexité des
équations d’Einstein.
L’une des
caractéristiques de ce cas de figure est le fait que la singularité
centrale n’est plus ponctuelle mais prend la forme d’un anneau.
Une autre
caractéristique est l’effet d’entraînement sur l’espace-temps. En effet,
l’influence du trou noir sur la géométrie de l’espace-temps est très forte. La
rotation de l’astre doit se répercuter sur cette géométrie, donc également sur
le mouvement des corps passant à proximité. Ainsi, un observateur immobile à
proximité d’un trou noir en rotation va se mettre à légèrement dériver
dans le sens de la rotation.
L’observateur peut
d’abord facilement contrer ce mouvement en se déplaçant lui-même. Mais en se
rapprochant du trou noir, il va entrer dans une région appelée l’ergosphère
dans laquelle il est impossible de rester au repos. Malgré ses efforts pour
résister, notre observateur va être entraîné par la rotation de l’espace-temps,
un peu comme un bateau qui se serait trop approché d’un tourbillon.
Cela ne signifie
pas pour autant qu’il va tomber dans le trou noir. L’ergosphère est une région
dont on peut s’échapper, à condition toutefois de prendre garde de ne pas
atteindre le rayon de Schwartzschild.
Trois paramètres
Notons encore une
propriété remarquable des trous noirs. Contrairement à tous les autres corps de
l’univers, ces astres peuvent être complètement décrits à l’aide d’un très
petit nombre de paramètres. Il suffit de connaître leur masse, leur moment
angulaire, qui caractérise la rotation, et leur charge électrique.
Cette simplicité
est à comparer avec une description complète d’une étoile normale qui devrait
prendre en compte toutes les particules mises en jeu, leur nature, leur
position ou leur énergie, et nécessiterait ainsi un nombre invraisemblable de
données.
Au contraire,
toute l’information sur un trou noir est contenue dans trois paramètres. La
raison en est simple : lorsque l’étoile massive s’écroule sur elle-même, toute
l’information sur ses particules disparaît à l’intérieur du rayon de
Schwartzschild. Toute cette information est donc perdue pour le monde
extérieur et le trou noir apparaît alors comme une simple déformation de
l’espace-temps, que trois nombres suffisent à définir.
Aucun commentaire:
Enregistrer un commentaire